
A Proposal for Requirement Engineering

Fumio Negoro

 The Institute of Computer Based Software Methodology and Technology
 3-11-3 Takanawa, Minato-ku, Tokyo 108-0074, Japan

f-negoro@lyee.co.jp
http://www.lyee.co.jp

Abstract. In what psychological state are requirements for a software model determined? It is
thought that the state must be existent in the incomprehensible depths of our consciousness. The state
is only one as a whole. This subject defines it as an intent. The action that produces a requirement or
the action that determines it is dispatched from an intent. In that sense, a requirement reflects an
intent. The reflection means the objectification. For example, the expression in language means it.
However, its scheme which is implemented as a phenomenon of life shall become none of which is
the same. On the basis of the aforementioned assumption, this subject pursues a standpoint of
grasping an intent but not of grasping a requirement. For this sake, hypotheses are accumulated.
From the said hypothesis, the rule of theorem is sought, and, by using it, an intent is sought. Scenario
Function is what was given its concrete form. The work to define the Scenario Function replaces so-
called traditional software development itself. The definition can be implemented with the work
procedure of determinism. This represents qualifications of the methodology of software
development. Related achievements are already available, too. In observing the state of the work, it
is undoubtedly effective, when compared with the traditional standpoint. It is thought that it is
because of the rationality of the hypothesis of this subject. The purpose of this subject is to describe
the overview of the Scenario Function and its hypothesis and publicize that such thinking can be
established.

1 Introduction

A universal structure exists in which a set produced on the basis of some mind and nouns belonging
thereto can be defined by programming language, and it is called Scenario Function, or SF. When SF is
executed on the computer, the action of those nouns autonomously complements with one another and
establishes systematization of significant data among nouns into the memory area of the computer. The
state reflects some mind different from a requirement.

In this subject, this mind is defined as an intent. If an intent is made into more abstraction, it comes to an
existence. Therefore, it is speculated that an intent dwells within thereabouts, not relating to a state of
existence. That is, an intent dwells in the concerned party who knows the systematization of data in the
memory area. The concerned party behaves by reflecting it. In this subject, this composition is defined
as software.

In order to define the concept of an intent axiomatically, we build a model that enables the establishment
of axiomism. It is called Consciousness Model. With the axiomism, a Three-dimension-like Space
Model (TDM, called hereinafter) is defined. Axiomatically, TDM is replaced by programs called Tense
Control Function and Pallet Function, three kinds of program called Signification Vector, and four kinds
of program called Action Vector.

By these nine kinds of program, it is re-defined. It is the entity of SF. Signification Vector and Action
Vector are defined on the basis of Predicate Structure introduced from this axiomism. Signification
Vector, in particular, concludes to be a mutually-independent one-variable proposition.

Three kinds of world with Unit [1] as its constituent are produced, and they assume a role to establish
three-dimensional coordinates system. In the space of the three-dimensional coordinates system, another
two kinds of world are placed. These two kinds of world are also a world with Unit as its constituent,

same as the aforementioned three kinds of world. The two worlds establish the whole with a relation of a
set and its complementary set. The two kinds of world are called denotative world (A+) and connotative
world (A-). This is an outline of the structure of TDM. The thinking of TDM is described further in the
section 2. 3.

In Consciousness Model, if Unique Unit [1] materializes in the denotative world and Critical Unit [1] in
the connotative world, a corresponding relation of the two kinds of world shall be established. The state
is a structure of the materialization of an intent. The state is dynamic, and for this reason, we cannot
grasp the whole of it. However, this subject targets to grasp an intent. To attain it, it is indispensable to
grasp an intent statically and unitarily although it materializes dynamically.

For that sake, this relation is not obtained in the three-dimensional space of TDM, but it is substituted into
the three kinds of world that can establish static state. The three-dimensional space of TDM is a stage for
the establishment of dynamic appearance.

For this purpose, by using the concept of the Unique Unit and Critical Unit, the Unit belonging to the
three kinds of world is recreated into a static structure that can perform the same role as they do. This
procedure must be implemented axiomatically in the same manner as the concept of Unique Unit and
Critical Unit was defined axiomatically. The structure of the Unit of the re-obtained three kinds of world
is Predicate Structure.

The materialization of the two kinds of world’s corresponding relation in TDM means that the boundary
point of the complementary set relation of the two kinds of world can be obtained in TDM, and it is
synonymous with that the coordinates ’ origin of TDM can be obtained. If this relation is expressed by SF
and executed on computer, the boundary point of the two kinds of world and its locus can be obtained.
The reflection of the appearance is the materialization of systematization of significant data mentioned in
the beginning. It is nothing but a requirement itself that reflects an intent to materialize.

The above-mentioned is a relationship of consciousness and requirement that is defined by the axiomism
of Consciousness Model. That is, SF is different from the traditional program that is logically described
in advance based on the knowledge and experience related to an intent, with view to its structure and
nature.

2 Scenario Function

If the traditional method to determine program is observed, it is thought that a requirement is attempted to
grasp by the method approaching from the connotative world to the denotative world. In contrast, SF
shall produce a requirement by the method different from it. Hereupon, centering on that matter, SF is
explained.

2.1 The Origin of Scenario Function

TDM is a world realized only by theorem. The theorem is delivered from the hypothesis of
Consciousness Model. A concept of the factor to establish the world is the Unit, and another concept to
establish the world’s corresponding relation defines the TDM. Fig. 1 shows the outline of these relations,
where the concept of synchronicity plays an important role. TDM is realization of synchronicity under
the hypotheses of this theory, SF is realization of TDM in programming language, and Conscious Model
provides axiomism that gives a theoretical base for the establishment of TDM and SF.

2.2 Meaning of Scenario Function

In the hypothesis of this subject, as already described, an intent is only one set. Further to mention, an
intent possesses density. For example, the number of nouns belonging to therein. The necessary and

sufficient number of nouns to materialize an intent means all nouns. It is designated by U, and its partial
density by A. The definition of U is possible in the connotative world that represents a conceptual world.
However, it is impossible in the denotative world that represents a world to be actualized. Therefore, the
definition of an intent is done in the connotative world and it is expressed by T1(U) .

Same as the case of U, the definition of the density of the whole A is possible in the connotative world but
impossible in the denotative world. Therefore, the definition of the whole A is done in the connotative
world and it is expressed by T1(A) .

It is the partial density of A whose definition is established in the both connotative world and denotative
world, and if it is designated by Ai, the definition of the partial density of A is T1(Ai), following after the
form of the preceding definition. Its definition in the denotative world is as follows, and it is the
definition of SF itself:

Φ[(Φ4,τ)[{L4,i}+{O4,rα}+{S4,rβ}+R4]+(Φ2,τ)[{L2,j}+{I2,rγ}+R2]+(Φ3,τ)[{L3,i}+R3]] (1)

Items composing SF are explained in the following sections. One SF or a combination of plural SF’s can
express T1(Ai), and a SF is called Basic Structure in either case.

Only limited to the case of Ai, the connotative world and the denotative world become synonymous. That
is, SF can be established. SF determines necessary commands universally and establishes the line-up
order of those commands after determine it universally. The execution of T1(Ai) means an action to repeat
it. That state is expressed by Tn(Ai). The subscript n is an index of the indication of its repetition. By the
execution, it converges into the state of A. That is, it establishes a relation of grasping A.

Speaking from this subject’s standpoint, the traditional program adopts a method targeting a program
which reflects A directly. As a result, the tendency of logical definition appears strongly. The problem of
productivity occurs thereabouts. The difference of these approaches explains why our methodology can

Consciousness Model

Concept to
define
TDM

Units
Predicate
structure Signification Vectors

Command Vectors
Variables
(nouns)

Three-Dimension-like Space Model (TDM)

Scenario Function (SF)

Tense Control Function

Pallet Function

Action Vectors

Structural Vector

Route Vectors

Fig. 1. The Origin of Scenario Function. A dotted arrow () represents theorems to create
synchronicity. An arrow with a starting point () represents realization of synchronicity in TDM.
A thick arrow () represents realization of an intent in programming language.

solve problems that traditional methods have caused. For example, the final structure of software can be
established universally by SF, the upper-stream work is simplified as a result . This is clear through the
software development we have done for our clients . [2]

The state of the memory after executing the traditional program reflecting an intent A, and that of Tn(Ai)
become identical. By using this relation, algorithm can be determined, which autonomously converts
traditional programs into SF. By using the algorithm, a tool has been developed which automatically
converts a traditional program in Assembler into SF in COBOL and a traditional program in COBOL into
SF in COBOL.

This conversion algorithm can be determined easily as for any languages. Also, algorithm to convert SF
into programs of a traditional type can be determined, too. The conversion algorithm does not need to be
reflected on the whole SF. For example, algorithm for the matrix calculation is just to be placed in the 2nd

box of the Signification Vector on the Pallet W04. Of course, it is possible to develop it in the whole SF.
Pallets are explained in the following sections.

2.3 Three-Dimension-like Space Model

A world reflecting an intent of necessary and
sufficient density is a denotative world, and a
world reflecting an intent of insufficient density
is a connotative world. The denotative world is
outside of our recognition. In TDM shown as
Fig. 2, the denotative world reflecting an intent
A is expressed by A+, and its element is
denotative Unit. The connotative world
reflecting an intent A is expressed by A-, and its
element is connotative Unit. As already
explained, the two kinds of worlds are placed in
the three-dimensional space of TDM.

The Unit is defined as a relation of a subset of
logical atoms [1] that produces an existence to
one logical atom that corresponds to the subset.
The logical atom is a concept created in the
Consciousness Model. Unit is distinguished into
either case that the equivalent atom belongs to
its subset or that it doesn’t. The state of the
former equivalent atom gives a whole nature to
its subset, and the latter gives a partial nature to
its subset. For this, the former Unit is called denotative Unit, and the latter connotative Unit.

The materialization of an intent A is realized upon the occurrence of common sharing of the equivalent
atom of the connotative Unit and denotative Unit of the two kinds of world A+ and A-, that reflect the
intent. That particular Unit is called Critical Unit o f the connotative Unit, and Unique Unit of the
denotative Unit. These Units can share the equivalent atom. As already described, the Predicate
Structure is delivered from the concept of these Units. It is one of the important conclusions of this
subject, but the detail of its delivery is out of the scope of this paper.

TDM establishes a corresponding relation of the two kinds of world A+ and A-, by using the three kinds of
world with Signification Vector defined based on Predicate Structure as its element. In other words, it is
a structure to determine the equivalent atom that makes the correspondence between the two kinds of
world A+ and A-. It is inevitable that the determined equivalent atom is positioned as the origin of the
TDM’s coordinates system.

Fig. 2. Three-Dimension-like Space Model

W04

W03

W02

A- i-

i2

i4

i3

i+

β
α

Neighborhood
space of the
boundary of
intent

 Signification vector

i- : an element belonging to A - (Natural Space)
i+ : an element belonging to A+ (Consciousness Space)
W02, W03, W04: a set of elements (i-) modified by
 the characteristics of W02, W03 and W04 respectively.
α, β : an origin of coordinates

A+

The reason why TDM becomes a three-dimensional-like structure is that there are three kinds of world
intervene between the connotative world and the denotative world in Consciousness Model.

The three kinds of world constitute one world which performs the role to correspond the two kinds of
world and is the connotative world as A-. Each of the three kinds of world possesses unique nature. W04,
W02 and W03 in Fig 2 represent the three kinds of world, and the Unit belonging to those worlds reflects
nature of its own world. That is, the Unit becomes Signification Vector that reflects the nature of its own
world and becomes an element of the three kinds of world. W04, W02 and W03 are called Pallet. A
Predicate Structure to make correspondence of A+ to A- in TDM is derived from theorems of this
methodology. Propositions, which are also called Signification Vector, are determined on the basis of the
Predicate Structure, and by executing them on the computer a correspondence between A+ to A- is
established. The correspondence is an intent, whereas integration of the TRUE state of the propositions is
what we call a requirement reflecting the intent. The meaning of the TRUE state of a proposition is
described in the following section.

2.4 Signification Vector

To reflect an intent in natural language is equal to collect subsets from among the set of words existing
innumerably and to assign a sequential order to the words belonging to the subsets. This is a work to
make the correspondence of the infinite number to the finite number, and it causes problems from
algorithm viewpoint. Therefore, this action ought to originally become polysemous (i.e., a state of
multiplicity of meaning). However, we have no means but to manifest it in one and only way. As a
result, it determines self-will. This matter is enough to relate that, except becoming accustomed to it,
there is no true way of making it public. Consequently, a self-will is a problem deep-rooted in a way of
our recognition, and it is thought that the action of verb has a deep relation to it. Therefore, we are to
obtain Predicate Structure, thereby excluding verb.

As shown in Fig. 3, one piece of Predicate Structure is comprised of
seven kinds of rule. Nouns belonging to a requirement are defined as
Signification Vector respectively by these seven kinds of rule. The
rule of the 2nd box can be defined by the information of user’s
definition, and the rest six kinds of rule can be defined with
determinism by the universality of Predicate Structure as well as
TDM. Pallet is three kinds (W04, W02, W03), and Signification
Vector belonging to each Pallet is defined in accordance with the
Pallet’s nature. Signification Vectors place on W04, W02 and W03
are respectively denoted as {L4,i}, {L2,j}, {L3,i}. The seven kinds of
rule are explained in the following paragraphs.

The First Box. The 1st box of Predicate Structure is a rule to make
judgment if the 2nd box of the same Signification Vector must be
executed or not. Signification Vector belonging to W04, {L4,i},
checks the 4th box of W03 Signification Vector having the same noun as its own, {L3,i}. If a value is set
therein, the W03 Signification Vector is TRUE. In that instance, the {L4,i}’s 2nd box rule is executed. If a
value is not set the 4th box of {L3,i}, the {L3,i} is FALSE. In that instance, the {L4,i} ends its role.
Signification Vector belonging to W02 and W03 checks the 4th box of their own Signification Vector. If a
value is set therein, the Signification Vector is TRUE. In that instance, it is not necessary to execute the
2nd box rule, so this Signification Vector ends its role.

The Second Box. The rule of the 2nd box of Predicate Structure is to tentatively set a value to be set to
the memory area of the 4th box. For this sake, a temporary memory area of every noun is prepared. The
2nd box rule of {L4,i} is to operate or duplicate the value corresponding to the variable (noun) of the
Signification Vector. An instruction to be filled in this box is given by the user as a requirement although
it is merely a part of an actual requirement.

A+

A-

No

Yes

oYes
Yes

 Box 5

 Box 1

 Box 2

 Box 3

 Box 4 Box 6 Box 7

S

E

Fig. 3. Predicate Structure

A variable that holds a value to be duplicated or used for calculation of another noun is called the 2nd

coordinate. A noun of the 2nd coordinate is not always allowed to exist in any Basic Structure in the
Process Route Diagram. The relation between the Pallets or the Basic Structures in which the variable
and the 2nd coordinate are placed should guarantee synchronicity. For example, a noun in the Pallet or the
Basic Structure placed in the odd ordinal numbers cannot become the 2nd coordinate noun. This is a
theorem of TDM. However, when a noun in such Pallet or Basic Structure needs to be used as the 2nd

coordinate, a memory area of the noun is prepared in advance on the Pallet synchronizing with that of the
variable so that it can become the 2nd coordinate. A noun becoming the 2nd coordinate in this manner is
called Boundary Word. The 4th box rule of the Signification Vector of a Boundary Word sets a value not
only in its memory area but also in the memory area to be used as Boundary Word. Process Route
Diagram is explained in the section 2.7.

The 2nd box rule of {L2,j} is to duplicate a value corresponding to the variable (noun) from the input
memory area (buffer) into its temporary memory area. The 2nd box rule o f {L3,i} is to tentatively prepare
the executing condition which is checked by the 1st box rule of {L4,i } of the same variable. It is a rule of
IF judgment of conventional ideas. The judgment result is set in the temporary memory area of the 2nd

box.

The Third Box. The rule of the 3rd box of Predicate Structure is to implement significance judgment of
the value obtained by the 2nd box rule. The 3rd box rule of Signification Vector is the same regardless of
the nature of the Pallet to which it belongs. That is, it is a rule to judge if the value set in the temporary
memory area of the 2nd box is significant or not. If significant, the process proceeds to the 4th box rule. If
not significant, the process proceeds to the 5th box. When proceeding to the 5th box, this Signification
Vector is FALSE as a proposition.

The fourth box. The rule of the 4th box of Predicate Structure is a rule to duplicate the value in the
temporary area of the 2nd box into the actual area of the variable. The 4th box rules of {L4,i}, {L2,j} and
{L3,i} are the same. It is a rule to duplicate the value set in the temporary memory area of the 2nd box into
the actual memory area. When plural calculation expressions exist conditionally for one noun to obtain a
TRUE value, the number of W03 Signification Vector taking the noun as variable is only one, whereas
plural W04 Signification Vectors are required. Such noun is called Equivalent Word.

The fifth, sixth and seventh boxes . The rules of the 5th, 6th and 7th boxes of Predicate Structure are not
delivered axiomatically. They are prepared to match TDM to the mode of the current computer.
Signification Vectors of any Pallet have the same rule.

SF consists of Tense Control Function (Φ), Pallet Function ((Φ4,τ), (Φ2,τ), (Φ3,τ)), Signification Vector
({L4,i}, {L2,j}, {L3,i}) and Action Vector ({O4,rα}, {S4,rβ}, {I2,rγ}, R4, R2, R3). Signification Vector and
Action Vector are generically called Tense Control Vector. Tense Control Function appoints Pallet to be
executed. Pallet Function executes all the Tense Control Vectors on the Pallet as a group and iterates
until the state transition of the Pallet does not occur any longer. State transition is judged if the state of all
the Tense Control Vectors on the Pallets have become TRUE or any changes of TRUE/FALSE state is
not expected. This judgement is done by the 5th box rule. When the state transition of the Pallet is not
expected, Route Vector declares the next Pallet, and Tense Control Function appoints it. In this manner,
SF is executed in repetition, thereby proliferating the TRUE state. This is a complementary action. The
execution of the 5th box rule is limited to the only case the Signification Vector is FALSE. When the
Signification Vector is already TRUE, the role ends in the 1st box. Signification Vector declares
execution of itself again if the Signification Vector is not TRUE. It is the 7th box rule. If Signification
Vector is not expected to become TRUE, the Signification Vector in the FALSE state autonomously
declares the refusal of re-execution. It is the 6th box rule. The relation of the request for re-execution and
the refusal is complementary. The result of the 6th box is checked by the 1st box rule. The result of the 7th

box is checked by the Pallet Function. A sample program of the Signification Vector appears on our web
page [3].

2.5 Complementary Action

The complementary action is referred in the previous section, and a little more meaning of it is added
herein. When SF is executed, a relation indicated by arrows in Fig. 4 is produced. This relation is
autonomously produced among all Tense Control Vectors. This is the appearance of the complementary
action. Whereas a traditional program is to be developed to assure its sequential execution, SF is free
from an idea of a sequence of execution owing to the complementary action. The complementary action
is realized because the Predicate Structure creates the structure of memory areas deterministically as
shown in Fig. 5. With understanding of the complementary action and the meaning of the 1st box and 3rd

boxes, it is clear that the logical verification of SF is not required at all.

Fig. 5. Tense Control Vectors and Memory Areas. (1) SV and AV denote the signification vector
and the action vector respectively. (2) A dot denotes that the memory area is required. (3) A
diamond denotes that the memory area is required in certain cases. (4) A shaded box indicates that
the memory area is not necessary

MSG

FLGStatusBox 2
Tense control vectors

(1)

Type
of

vectors
(1)

Pallet
EOF

Previous
access key

Current
access key

Self word area Control box area

SV

AV

W03

W02

W04

SV

AV

AV

3. Structural vector

1. SV for output word
state control vector

2. Output vector
 & duplication vector

4. Route vector

5. SV for input word
& state control vector

6. Input vector

7. Route vector

8. SV for output word
 & state control vector

9. Route vector

◊(3)

•(2)

•

SV

Box 4 Box 6 Box 7

•

•

•

• •

•

• •

•

•

•

• • •

• • •

• •

• • • • •◊

◊ • • •◊

L3,a L4,b

E

No

FALSE

TRUE

Yes

S

No

Acceptance

RestartEnd

Execution

E

No

FALSE

TRUE

Yes

S

No

Output
 Data

Empty

RestartEnd

Execution

Output
 Data

E

No

FALSE

TRUE

Yes

S

No

Attribute

RestartEnd

Execution

Input
Data

Fig. 4. Complementary Action . The 2nd box of L2,a acquires input data, the 2nd box of
L3,a acquires complementary conditions, and the 2nd box of L4,b generates output data.

L2,a

2.6 Action Vector

The structure of Action Vector is Predicate Structure basically, and it is diverted for the use of Action
Vector. The Signification Vector is defined for every noun, but the Action Vector is defined for every set
of nouns made into a unit. The so-called logical record is a set of nouns made into a unit. If Action
Vector is also regarded as a proposition, the TRUE/FALSE relation is determined by the state of the 4th

box, same as the case of Signification Vector. Action Vectors are categorized into four kinds as Input,
Output, Structural and Route Vectors.

If the environment for execution is defined, the Input Vector and the Output Vector are generated from
that information. If logical records and nouns are defined, the Structural Vector and the Route Vector are
generated from that information. Sample programs of the Action Vector are shown on our web page [3].
The roles of respective Action Vectors are as follows:

Input Vector. This Action Vector, denoted as {I2,rγ}, duplicates a value in a physical record into its
input memory area called logical record (rγ). This Action Vector is defined for every input logical record
(rγ) and placed in W02. In case that the same Input Vector is defined in plural Basic Structures, if it
becomes TRUE on one of the Basic Structures, the Input Vector on all the Basic Structures become
TRUE.

Output Vector. This Action Vector, denoted as {O4,rα }, duplicates a value in the W04’s Pallet Word
memory area into the output memory area called logical record, (rα) and then outputs it on an external
device. This Action Vector is defined for every output logical record (rα) and placed in W04 .

Structural Vector. This Action Vector is denoted as {S4,rβ}. When Output Vector becomes TRUE, that
is, output has been done, Structural Vector initializes every memory area of a Basic Structure with which
the Output Vector is concerned. Structural Vector is defined for each memory area, rβ. A memory area
to be regarded as a unit to be initialized is as follows:
• on W02, an input memory area, rγ, and a W02 Pallet Word area;
• on W03, a W03 Pallet Word area;
• on W04, an input memory area, rα, and a W04 Pallet Word area.
A Pallet Word area is a memory area defined by Signification Vector.

Route Vector. Tense Control Function controls Pallet transition and this Vector generates information
for the transition. Even if there are a plural number of Pallets as a destination, one Route Vector is
sufficient for a Pallet. Route Vectors on W04, W02 and W03 are denoted as R4, R2 and R3 respectively.
The classification of Route is the following seven kinds.
• Route 42: It is a route to proceed from W04 to W02 in Basic Structure (τ), that is, R4τ: W04,τ →W02τ

• Route 23: It is a route to proceed from W02 to W03 in Basic Structure (τ), that is, R2τ: W02 τ →W03τ

• Route 30: It is a route to stop operation after W03 in Basic Structure (τ), that is, R3τ: W03 τ →End
• Recursive Route: It is a route to return to W04 from W03 in Basic Structure (τ), that is, R3τ:

W03 τ →W04τ

• Continuous Route: It is a route to proceed from W03 to W04 of one of the succeeding Basic
Structures, that is, W03→W04next

• Duplex Route: It is a route to return from W03 to W03 of the previous Basic Structure, that is,
W03→W03previous

• Multiplex Route: It is a route to return from W03 to W04 of the preceding Basic Structure when the
two Basic Structures are not adjoining each other, that is, W03→W04preceding

2.7 Process Route Diagram

The plural number of SF’s are connected each other using the information provided by Route Vectors,
and the connected SF’s establish a structure that expresses an intent. The structure is called Synchronous
Structure and the diagram of the connected SF’s, shown in Fig. 6, is called Process Route Diagram, PRD.

Information on screen transition, for example, corresponds to PRD although screen transition should be
defined beforehand. PRD, on the other hand, can be drawn theoretically owing to the structural
characteristics of SF and does not need to be defined in advance.

2.8 The Structure of Pallet Area

Memory areas are assigned on specific Pallets as follows. A memory area for an input logical record is in
W02, that for an output logical record is in W04, that for a word of input attribute is in W02 and that for a
word of output attribute is in W04 and W03. These relations of the Tense Control Vector to the memory
areas are based on determinism. Fig. 5 shows the placement of memory areas.

3 Conclusion

We expect an intent to be manifested by using words of the natural language in a certain sequential order.
However, it is not certain in what manner an intent materializes, and it is not certain how the language
concerns itself with it.

The purpose of this study is found in realizing universality in the requirement of software development.
That is, supposing that the requirement originates in an intent, and in obtaining its origin, an observation
is made, by obtaining the rule of theorem materializing therein, for establishing universality in the
requirement based on the rule of theorem. It is the proposition of this study.

A model is built , which realizes axiomism so as to enable to define the origin of an intent axiomatically.
It is the Consciousness Model. In this theory, however, the Consciousness Model and its axiomism are
not explained. From this model, the Three-dimension-like Space Model and Predicate Structure are
delivered. That is, SF is what represents the origin of the hypothesized intent. By executing it, a
relationship materializes as if an intent which creates a requirement can be obtained. In other words, it
can establish the complementary action of Signification Vectors in the set of Signification Vectors.
Because of this, the sequence of the requirement definition can be removed. This means the requirement
can be grasped resultantly without being deeply concerned with the requirement. That is, SF has
succeeded in realizing the relation in which a requirement is delivered from an intent.

• SF uses nouns belonging to a requirement as a factor to materialize as an intent.
• SF converts the traditional chaotic program structure into a universal structure.
• SF reduces traditional works such as designing, production and verification.
• SF can change a way of recognizing software from conventional to revolutionary.

W041 W021 W031

Route
42

Route
23

Route
30 END

W042 W022 W032

W043 W023 W033

Continuous
Route

Multiples Route

Duplex
 Route

Fig. 6. Process Route Diagram. Arrow are routes defined by Route Vectors.

Recursive Route

• More than 90% of the total work volume of the traditional software development can be automated by
SF.

All of these above-mentioned may as well qualify SF to be the most innovative methodology of software
development. In Japan, SF has already been used for actual systems of small to large scales, and
innovative results have been proven in the productivity and maintainability. Thus, the methodology is
highly anticipated to be used in the world .

The idea presented here is a new definition of software deeply influenced with the works of Spinoza,
Leibniz and Wittgenstein.

References

1. Negoro, Fumio : Principle of Lyee Software. Proceedings of 2000 International Conference on
Information Society in the 21st Century, IS2000 and the University of Aizu (2000) 441-446.

2. Record of System Development at http://www.lyee.co.jp.
3. Lyee Scenario Function- sample programs at http://www.lyee.co.jp.

This paper appears in the proceedings of the ADBIS2001 held in September 2001 in Vilnius, Lithuania.

