
Methodology to Define Software in a Deterministic Manner
Fumio Negoro

The Institute of Computer Based Software Methodology and Technology

3-11-3 Takanawa, Minato-ku, Tokyo 108-0074, Japan

f-negoro@lyee.co.jp
Abstract
Our intelligence (science or a thoughts) is established on a basis of what is memorized. Since memory is always ambiguous,
intelligence can be established only ambiguously. The reason why memory is ambiguous is that the way memory is formed is
ambiguous. In our methodology, we consider that the cause of formation of memory is Intention and try to explore the structure
of Intention. By doing this, we can get around the ambiguity. For this purpose, we have made hypothesis and made it into an
axiomatic system and deduced this methodology for software development from the axioms.

Keywords: deterministic manner, intention, requirement, software structure

1 Introduction

This paper discusses a methodology to define computer-based software (herein after called “software”) in a deterministic manner.
In order to do so, we have created a “metaphysical model”. A conventional way uses a model derived from empirical knowledge,
which have generally been called a theoretical model. However, from our viewpoint we do not call such a model a theoretical
model. That is, a model that is defined by theorems and thoughts derived from empirical knowledge is not theoretical. We regard
a model that can be defined only by the theorems established in the metaphysical model as theoretical. Our methodology results
in definitions of the process to capture Intention, not Requirement. Therefore, if you work based on our methodology, you will
get one result that you have defined software to capture Intention. The process herein means a thinking process in the human
mind to define the software. Requirement herein is objects that are represented by sentences. The sentences include
mathematical and logical notations. Intention herein is defined as a cause in the human mind to create the sentence, which we
cannot cognize at all. The metaphysical model that we have created is a model for capturing Intention, whereas the conventional
models are created from Requirement. This tells the difference between our methodology and conventional ways. The
metaphysical model is divided into two types. One is a model to establish an axiomatic system and then define Intention with the
axiomatic system, and the other is a model to realize the Intention. The former is called Consciousness Model (CSM) and the
latter is called Three-dimension-like Space Model (TDM). Discussion of the model for defining Intention axiomatically is very
important although it is out of scope of this paper. TDM can be expressed in any programming language. This means that TDM
can be processed on a computer. TDM expressed in a programming language is called Scenario Function (SF). The purpose of
this paper is to discuss conceptually how SF is defined.

2 Relation between Requirement and Scenario Function

A relation between Requirement and Intention is replaced with that of Requirement and SF. In conventional ways, a program
deduced from Requirement logically represents a dynamic state of Requirement. In this connection, from our viewpoint, the
reason why productivity of software development and maintainablity cannot be improved lies in our instinctive way of thinking
which forces us to deal with the dynamic state. Therefore, such issue of software cannot be resolved simply with engineering.
Intention can be expressed as a static state with TDM. In other words, the axiomatic system makes TDM to express Intention as a
static state. That is, SF is a program representing Intention in a static state, and the mode of SF is different before execution, i.e. a
state defined by a human (user, SE, programmer, etc.) and during the execution on a computer. Such difference does not appear in
conventional programs. In order to capture Intention, we need some kind of cognition. Such cognition exists as a basis of
Requirement.

Let us discuss our concept of software for you to understand our methodology. Software consists of people (those who express
Requirement, users of the software and developers of the software) the defined and the process logic. The defined is layout of
screens and printouts, for example. The process logic consists of the logic to control the processing and user’s logic. The user’s
logic is taken into software but nothing to do with software intrinsically. This point is very important to understand our
methodology. The logic to control processing does not need to be defined when SF is defined by developers because SF is
deduced from the axiomatic system for capturing Intention. For software to be developed in conventional ways, the logic to
control processing is crucial and has to be defined by developers because the software need to be deduced from Requirement, not
Intention. As a consequence, for conventional software development a software model has to be made on a basis of Requirement,
and the model is nothing but the logic to control processing. As SF realizes a software model that can be applied universally, even
though our methodology uses Requirement, what is expected to Requirement is different from that of conventional ways. The
amount of information necessary for our methodology is smaller than that of conventional ways, moreover, the information to be
used is much simpler than conventional ways.1

1 See our website at http://www.lyee.co.jp.

mailto:f-negoro@lyee.co.jp

A mentioned above, Requirement is expressed as sentences. The sentences are regarded as a set of words. One of the
characteristics of our methodology is that the rule of grammatical sequence of the terms can be ignored. We form a set of words.
This set is made into a unit for each screen and printout. A unit establishes a SF. Since Requirement consists of the plural units,
Requirement is replaced with plural SF. Plural SF are linked each other with four rules. Linked SF become a unit of software,
which can be defined in a diagram. This diagram is called Process Route Diagram (PRD). These four rules will be discussed
later. A variety of parts of speech belong to the unit. Each word belonging to the unit becomes a one-variable proposition taking
a word as its variable. The rule to define the proposition is axiomatically and deterministically applied to any word, and we call
this rule Predicate Structure. Predicate Structure and the four rules mentioned above are deduced from the axiomatic system.
Although the way they are deduced is an important issue, this issue is not discussed in this paper. The proposition, four rules and
the elements to be mentioned later are generally called Vector.

In summary, SF consists of a set of Vectors, and the sequence of placement of Vectors in a set can be neglected. The four rules,
other elements and the sequence of placement of Vectors are discussed later. If a word cannot be defined as Vector by Predicate
Structure, the word should be eliminated from candidates for Vector. Sentences defining Requirement are handled as follows:
The role of a noun is replaced with a proposition. The role of an intransitive verb is absorbed in a proposition. The role of a
transitive verb is considered to be absorbed in the structure of TDM, and its role is generated autonomously when SF is executed
on a computer. The role of other parts of speech is considered to be unable to be absorbed in software. Such words are, for
example, “beautiful”, “lively”, and “shall”. The role of these words is entrusted to an individual. The role of an article is
considered to be a part of a noun in software. The actions mentioned above, such as to replace, absorb, autonomously generate,
and entrust, are done in a deterministic manner. The cognizable foundation on which our methodology simplifies Requirement is
axiomatic establishment of the deterministic manner.

3 Concept of Scenario Function

In this section, we discuss SF as a formula.
SF = Φ[Φ4({L4,j},{O4,rα},{S4,rβ},R4) + Φ2({I2,rα},{L2,i},R2) + Φ3({L3,j},{R3,k})]

Φ4({L4,j},{O4,rα},{S4,rβ},R4), Φ2({I2,rα},{L2,i},R2) and Φ3({L3,j},{R3,k)) are called Pallet and denoted as W04, W02 and W03
respectively. In the axiomatic system, we exist in both cognizable and incognizable spaces. Intention establishes in the
incognizable space whereas Requirement establishes in the cognizable space. As Pallet represents cognizable space, Pallet can be
defined. SF is defined based on the Requirement established in the cognizable space. Execution of SF means to establish the
cognizable space defined by Pallet, and establishment of the space means that Intention has been established. According to the
axiomatic system, establishment of Intention causes to establish cognition. This hypothetical story is reflected in Predicate
Structure and TDM. The elements enclosed in the parentheses () are the all kinds of Vectors. The role of Vectors differs from
each other based on the role of Pallet. The rule of Predicate Structure is to complete the instructions composing a Vector in a
programming language and to determine the sequence of placement of these instructions. That is, Predicate Structure deduced
axiomalically is the rule to define Vectors deterministically. The number of kinds of Vectors is ten. That is, six of them are L4,j,
O4,rα, S4,rβ, I2,rα, L2,i, L3,j and the remaining four kinds are to link Pallets or SF. These four kinds of Vectors are referred to
as the four rules in the above and herein after called Routing Vector. They are denoted as R4, R2 and R3,k. Vectors denoted as
L4,j, L2,I and L3,j are called Signification Vector and defined as one-variable (one-word) propositions. Vectors denoted as O4,rα,
S4,rβ, and I2,rα are generally called Action Vector and defined as plural-variable (plural-word) propositions.

A sign + in SF means that Pallets are controlled in the order of W04, W02 and W03 when they are executed. Φ4, Φ2 and Φ3 are
not defined with Predicate Structure, i.e. not defined axiomatically, but defined deterministically by Vectors belonging to W04,
W02 and W03. Φ4, Φ2 and Φ3 are called Pallet Function and control execution of elements enclosed in the parentheses () on a
computer. Routing Vectors are as follows: R3,k are categorized into four kinds, i.e., the role of them are categorized as
Continuous, Recurrence, Duplex and Multiplex links. The role of R4 and R2 is the same as that of R3 Continuous link. The role
of Continuous link of R4 is to hand over the control of execution from W04 to W02. This role is denoted as + in the formula. The
role of Continuous link of R2 is to hand over the control of execution from W02 to W03. This role is also denoted as + in the
formula. The role of Continuous link of R3,1 is to hand over the control of execution from W03 to W04 of the next SF. The role
of Recurrence link of R3,2 is to hand over the control of execution from W03 to W04 of the same SF. The role of Duplex link of
R3,3 is to hand over the control of execution from W03 to W03 of the preceding SF adjoined to the current SF. The role of
Multiplex link of R3,4 is to hand over the control of execution from W03 to W04 defined as its preceding SF. As the result of
execution of Routing Vector, Pallet is executed iteratively in itself or linked with other Pallet. Control of iteration is done by
Pallet Function based on the information produced when Routing Vectors are executed. Control of linking is done by Φ based on
the information produced when Routing Vectors are executed. Φ is called Tense Control Function. Φ is expressed in a
programming language although it is not defined with Predicate Structure, i.e., not defined axiomatically but deterministically by
the characteristics of SF and the execution environment.

The role of Signification Vector when they are executed is to produce a relation to establish Intention. When Signification Vector
becomes TRUE, the relation is established by the axiomatic system. If not TRUE, the Vector autonomously iterates until it gets
TRUE. For this purpose, iteration and linking of Pallets are done. If it turns out that the Vector cannot become TRUE, the Vector
requests a person to play its role. This logic to control processing is autonomously created by SF. Being TRUE means that a
value is made in the memory area for the 4th box of a proposition. The structure of a proposition (Predicate Structure) and the 4th

area are shown in Figure 1. The role of Action Vector is to control the relation between the defined and CPU memory. O4,rα is

to hand over data from CPU memory to the defined. I2,rα is to get data from the defined
to CPU memory. S4,rβ is to manage the CPU memory. rα and rβ are units of data when
Action Vectors are executed where α and β express that the structure of the units, or a set
of words, is different from each other.

4 Relation between SF and Requirement

SF possesses two characteristics. One appears when SF is defined by a human and the
other is created when SF is executed on a computer, and these characteristics are
different. On the other hand, such difference does not appear in conventional programs.
For example, a control structure of conventional programs is realized as defined by a
human, whereas the control structure of SF is not necessary to be defined by a human as
it is autonomously realized on a computer. Such difference between conventional ways
and SF influences the degree of complexity of human work of dealing with Requirement.
The structure of SF is determined by Φ, Φ4, Φ2 and Φ3, which are deduced from the axiomatic system, but not Requirement as
conventional ways. Definition of Vector is simplified as Vectors are logically independent of each other owing to Predicate
Structure and the structure of SF.

When defining SF, developers do not need to think about
how SF is executed on a computer, i.e. the logic to control
processing, whereas in conventional ways they have to
think about how programs to be executed on a computer.
As complexity of Requirement is replaced with that of the
logic to control processing, in the conventional world we
encounter the issue of complexity. Since the logic to
control processing is deeply related to our thought, this
issue is not limited to software. It is considered that by
using SF we are free from this issue. Such effect of SF is
considered to be brought by the establishment of the
hypothetical axiomatic system to capture Intention.

Let us explain concretely what are needed as Requirement
for our methodology. They are categorized into three as
follows:
1. Definition of words expressed in Requirement
2. Definition of the defined
3. Definition of PRD
Once definition of words expressed in Requirement is
done, definition of the defined is axiomatically done.
Then, PRD can be defined axiomatically. What is done
axiomatically here can be replaced with logic to establish SF automatically. Examples of the above 1, 2, and 3 are shown in
Figures 2, 3, and 42. When SF is to be established automatically, a tool for it is used. The logic used for the tool is not

2 These are extracts from actual projects.

Figure 1. Predicate Structure

Box 7Box 6Box 4

Box 5Box 3

Box 2

Box 1

Label ID I/O
attribute

Defined to
which word

belongs

Array-
row

LengthData
type

Array-
column

Decimal
places

User’s logic Meta-expression

Company Code 3 If FR02 has not been read,
set A0010 of FR01
to A0010 of FW01.

S9A0010

Figure 2. Definition of Words Expressed in Requirement

IF CRX_FR02_RKSTS = ‘3’
SET FW01.A0010 = FR01.A0010

O Not
used

0 Not
used

FW01

Physical IDFile name How to use file by
Input or output

Access conditions

Structure of the key for adding a record:
F01.Company Code AND
F01.Branch Code AND
F01.first 6 digits of Transaction Date AND
F01.Classification Code AND
F01.Fiscal Year

OMonthly sales record by classification HKF0D0F03

Logical ID

Figure 3. Definition of the Defined

 HKRAD60212

W02

System ID: HK System name: Sales Management System
PRD name: HKRAD60010 PRD name: 1-2-1 Summary of Sales Orders

 HKRAD60214

F60-H4F0R0
Y60-HKY0R0
WT40-H4K0R0-F60

W04

 HKRAD60213

W03

SF02

 HKRAD60312

W02

 HKRAD60314

RN41-HKK0RH-F61
KNEW-HKN0RD

W04 W03

SF03

 HKRAD60313

 HKRAD60412

W02

 HKRAD60414

K80-HKX0R0
KOLD-HKN0RD

W04 W03

 HKRAD60413

SF04

Figure 4. Definition of PRD

complicated as this tool is also on a basis of the axiomatic system. Requirement for our methodology is basically the definition of
words expressed in Requirement.

Source codes of the Vectors in COBOL appear in Figures 5 and 6, where a set of items in italic represents user’s Requirement. As
R2 is the same as R4, R2 is not presented in the Figures. Since boxes 5, 6 and 7 of O4, I2, R4, R3 and S4 are not important in
terms of the discussion, they are omitted due to the limitation of the space.

L4-FORMID-j1 SECTION.
*BOX1
 IF j1 OF W03-FORMID NOT = “j1”
 OR j1 OF W04-FORMID NOT = LOW-VALUE
 CONTINUE
 ELSE
*BOX2: USER’S LOGIC
 COMPUTE j1 OF WORK4-FORMID = i1 OF W04-FORMID
 + j2 OF W04-FORMID
*BOX3
 IF j1 OF WORK4-FORMID NOT = LOW-VALUE
*BOX4
 MOVE j1 OF WORK4-FORMID TO j1 OF W04-FORMID
 ELSE
*BOX5
 IF STATUS-CHAGE-FLG OF W04-FORMID = LOW-VALUE
*BOX6
 MOVE “1” TO j1-FALSE OF W04-FORMID
 ELSE
*BOX7
 MOVE “1” TO j1-REEXECUTE OF W04-FORMID
 END-IF
 END-IF
 END-IF
EXIT.

L2-FORMID-i1 SECTION.
*BOX1
 IF i1 OF W02-FORMID NOT = LOW-VALUE
 CONTINUE
 ELSE
*BOX2: USER’S LOGIC
 MOVE i1 OF READ-WFL-FORMID TO i1 OF WORK2-FORMID
*BOX3
 IF i1 OF WORK2-FORMID IS NUMERIC
*BOX4
 MOVE i1 OF WORK2-FORMID TO i1 OF W02-FORMID
 MOVE i1 OF WORK2-FORMID TO i1-BD OF W04-FORMID
 ELSE
*BOX5
 IF STATUS-CHAGE-FLG OF W02-FORMID = LOW-VALUE
*BOX6
 MOVE “1” TO i1-FALSE OF W02-FORMID
 ELSE
*BOX7
 MOVE “1” TO i1-REEXECUTE OF W02-FORMID
 END-IF
 END-IF
 END-IF
EXIT.

L3-FORMID-j1 SECTION.
*BOX1
 IF j1 OF W03-FORMID NOT = LOW-VALUE
 CONTINUE
 ELSE
*BOX2: USER’S LOGIC
 IF i1 OF W02-FORMID NOT = LOW-VALUE
 MOVE “j1” TO j1 OF WORK3-FORMID
 ELSE
*BOX3
 IF j1 OF WORK3-FORMID NOT = LOW-VALUE
*BOX4
 MOVE j1 OF WORK3-FORMID TO j1 OF W03-FORMID
 ELSE
*BOX5
 IF STATUS-CHAGE-FLG OF W03-FORMID = LOW-VALUE
*BOX6
 MOVE “1” TO j1-FALSE OF W03-FORMID
 ELSE
*BOX7
 MOVE “1” TO j1-REEXECUTE OF W03-FORMID
 END-IF
 END-IF
 END-IF
 END-IF
EXIT.

O4-FORMID SECTION.
*BOX1
 IF j1 OF W04-FORMID = j1-PRV OF W04-FORMID
 AND j2 OF W04-FORMID = j2-PRV OF W04-FORMID
 :
 AND jm OF W04-FORMID = jm-PRV OF W04-FORMID
*BOX2
 MOVE j1 OF W04-FORMID TO j1 OF WFL-FORMID
 :
 MOVE jm OF W04-FORMID TO jm OF WFL-FORMID
 WRITE FORMID
*BOX3
 IF WRITE-STS OF CONTROL-BOX = LOW=VALUE
*BOX4
 MOVE LOW=VALUE TO j1 OF W04-FORMID
 :
 MOVE LOW=VALUE TO jm OF W04-FORMID
 END-IF
 END-IF.
EXIT.

I2-FORMID SECTION.
*BOX1
 IF KEY OF CONTROL-BOX NOT = LOW=VALUE
*BOX2
 READ FORMID TO WFL-FORMID
*BOX3
 IF READ-STS OF CONTROL-BOX = LOW=VALUE
*BOX4
 MOVE “1” TO READ-FALSE OF CONTROL-BOX
 END-IF
 END-IF
EXIT.

R4-FORMID4 SECTION. (CONTINUOUS LINK)
*BOX1
 IF j1 OF W04-FORMID = j1-PRV OF W04-FORMID
 AND j2 OF W04-FORMID = j2-PRV OF W04-FORMID
 :
 AND jm OF W04-FORMID = jm-PRV OF W04-FORMID
*BOX2
 MOVE “FORMID-W02PALLET”
 TO NEXT-PALLETID OF WORK4-FORMID
*BOX3
 IF NEXT-PALLETID OF WORK4-FORMID NOT = LOW=VALUE
*BOX4
 MOVE NEXT-PALLETID OF WORK4-FORMID
 TO NEXT-PALLETID OF CTRL
 END-IF
 END-IF
 EXIT.

Figure 5. Source Codes of Vectors (COBOL) - 1

There is a logical relation between SF and conventional programs. This relation establishes the logic that converts the structure
from one to the other between them. This is possible because SF is defined deterministically. The fact that SF is deterministically
defined inspires us to improve its availability and serviceability.

4.1 Productivity

Let us discuss productivity from a viewpoint of development and maintenance. As it is clear from the above example, Vector is
defined with the information of a minimum Requirement (word information). Looking at the structure of Vector closely, the
number of lines of source codes of any Vector of the same kind is the same, and the role of instructions defined in the 1st box of a
Vector is to verify that the Vector can be executed. The role of instructions defined in the 3rd box of a Vector is to check the
validity of the result of execution of the Vector. Vector autonomously performs verification and validation when it is executed,
but those who define Vector do not need to be aware of it because the instruction in the 1st box is defined axiomatically and that of
the 3rd box is defined axiomalically as well as deterministically. The instruction in the 2nd box is defined with user’s logic except
logic to control processing. The instructions in the 4th, 5th, 6th and 7th boxes are defined axiomatically. Therefore, verification
and validation of a set of Vectors, i.e. that of SF as a whole, is always guaranteed by Vector, and this means that correctness of SF
is guaranteed. In conventional ways, there is no guarantee of the correctness of the program as a whole even if a part of the
program is correct. In other words, it has not been possible to make a part that makes the whole correct. However, Vector makes
it possible. In conventional ways, tests of a program as well as combined programs as a whole are required, whereas SF does not
need to be tested in such a way. In summary, Requirement for our methodology is to be simplified, and SF has a variety of
characteristics to expedite mental work. These improve the productivity of human work of defining SF.

4.2 Reliability
Reliability of software of our methodology is obvious owing to the characteristics of the structure of SF as mentioned.

4.3 Availability
Any Requirement that can be expressed in a natural language can be replaced with SF as mentioned. Since our cognition is
expressed in a natural language, our cognition is to be replaced with SF.

4.4 Serviceability
Serviceability of software is assured by maintenance in conventional ways. This is considered to be characteristics of software.
Therefore, in order to improve serviceability, maintainability should be high. However, in conventional ways, improvement of
serviceability has not been done sufficiently. Figure 7 shows correspondence of processes of software development in our
methodology and conventional ways. Programming in conventional ways is completely automated in our methodology, and
testing in conventional ways is replaced with a part of our tool. Validity of Requirement is replaced with a function of our tool as
semantics analysis. This logic, which might be considered complex, is replaced with a relation among word for which Vectors are
established. This means that maintenance and development of software can be done in a same manner, and they are done in much
shorter time than in conventional ways.

5 Execution Performance of SF
When programs are developed in our methodology and a conventional way for the same Requirement, the number of lines of
source codes of SF is three to five times as much as that of conventional programs. When a conventional program is
automatically converted to SF, the number of lines of the source codes increases to 10 to 50 times. However, the important point
is that this does not mean that the number of lines of SF to be executed is greater than that of the conventional program to be
executed. In conventional programs, instructions to be executed are defined, whereas in SF, all the instructions are defined and
only the necessary instructions among them are executed based on the execution conditions. As a consequence, the CPU time is
almost the same as conventional ways. SF can be automatically converted into the structure of conventional programs.

R3-FORMID SECTION. (RECURRENCE LINK)
*BOX1
 IF j1 OF W03-FORMID = j1-PRV OF W03-FORMID
 AND j2 OF W03-FORMID = j2-PRV OF W03-FORMID
 :
 AND jm OF W03-FORMID = jm-PRV OF W03-FORMID
*BOX2
 MOVE “SELF-FORMID-W04PALLET”
 TO NEXT-PALLETID OF WORK3-FORMID
*BOX3
 IF NEXT-PALLETID OF WORK3-FORMID NOT = LOW=VALUE
*BOX4
 MOVE NEXT-PALLETID OF WORK3-FORMID
 TO NEXT-PALLETID OF CTRL
 END-IF
 END-IF
EXIT.

S4-FORMID SECTION.
*BOX1
 IF j1 OF W04-FORMID = j1 -PRV OF W04-FORMID
 AND j2 OF W04-FORMID = j2 -PRV OF W04-FORMID
 :
 AND jm OF W04-FORMID = jm -PRV OF W04-FORMID
*BOX2 (not used)
*BOX3 (not used)
*BOX4 (not used)
 MOVE LOW-VALUE TO i1 OF W02-FORMID
 MOVE LOW-VALUE TO i2 OF W02-FORMID
 :
 MOVE LOW-VALUE TO in OF W02-FORMID
 MOVE LOW-VALUE TO j1 OF W03-FORMID
 MOVE LOW-VALUE TO j2 OF W03-FORMID
 :
 MOVE LOW-VALUE TO jm OF W03-FORMID
 END-IF
EXIT.

Figure 6. Source Codes of Vectors (COBOL) - 2

6 Conclusion

Emergence of software for computer systems is mostly attributed to the progress of development technology of hardware, but not
to the development of software engineering. This is clear from the evidence that since the early days of software development,
software has been developed in a way as if they have tried to build a high-rise building with lumber. Consequently, a large
number of trials have been proposed, but none of them has contributed to improving efficiency of the intrinsic quality of the
software development process. Moreover, functionality as a system, which is acquired as a result of software development, is
advertised while the issue of software development itself is always forgotten. Although a lot of contradictions due to deficiency
of development technology appear one after another and are left behind, a worldwide tendency to excluding an opportunity to
confront and solve the problems has been created.

Software is a means of capturing the real world with phenomena. Whereas software is established based on Intention of its users
and developers as a physical structure, the connection between Software and the Intention is stronger than that between a physical
structure and the Intention. This is the intrinsic quality of software and indicates that software is existence with the characteristics
that we should capture it in the metaphysical world. In short, a viewpoint (theory) that establishes such a world is indispensable.
That is, the intrinsic quality of software requires a viewpoint attained in the metaphysical world beyond the abstract concepts
created by a traditional knowledge system. Therefore, problems arisen from software development technologies cannot be solved
without overcoming this issue.

Our methodology is a theory constructed on a basis of the above reflection. This is not a mere theory to show some concepts
although traditional theories are often to be so. This methodology is nothing but a theory to specify the precise work process of
software development.

References

HAMID, I.A. and NEGORO, F. (2001): New Innovation on Software Implementation Methodology for the 21st Century -What
Software Science can Bring to Natural Language Processing-. Proc. SIC 2001 World Multiconference on Systemics, Cybernetics
and Informatics, Orlando FL, USA, XIV: 487-489, IIIS (International Institute of Informatics and Systemics) & IEEE Computer
Society.

NEGORO, F. (2001): Intent Operationalisation for Source Code Generation. Proc. SIC 2001 World Multiconference on
Systemics, Cybernetics and Informatics, Orlando FL, USA, XIV: 496-503, IIIS (International Institute of Informatics and
Systemics) & IEEE Computer Society.

NEGORO, F. (2000): Principle of Lyee Software. Proc. 2000 International Conference on Information Society in the 21st

Century, Aizu-Wakamatsu, Japan, 441-446, The University of Aizu, Information Processing Society of Japan & IEEE Japan
Council.

This paper appears in the Proceedings for ICII2001 in October 2001, in Beijing, China.

Testing
Defining necessary
information for
program

Modeling
Requirement

SF
Tool to generate
program
automatically

A part of the tool to define
programming language
and system environment

Tool to analyze
semantics of
information

1. Defined (Fig. 3)
2. Word information (Fig. 2)
3. PRD (Fig. 4)

ProgramProgramming

YES

NO

Figure 7. Correspondence between Conventional Way and our Methodology

Our Methodology

Conventional

	Introduction
	Relation between Requirement and Scenario Function
	Concept of Scenario Function
	Relation between SF and Requirement
	Productivity
	Reliability
	Availability
	Serviceability

	Execution Performance of SF
	Conclusion
	References

